New therapies and new ideas about Kawasaki disease

Jane C. Burns MD

Objectives To review new ideas about...

- 1. How IVIG works in KD
- 2. Role of infliximab in KD
- **3.** How aneurysms form
- 4. Statins to prevent aneurysms in acute KD
- 5. The trigger that causes KD in genetically susceptible children

Basic Structure of IgG

Proposed mechanisms of action of IVIG in KD

F(ab)²-dependent mechanisms:

- 1) Anti-cytokine antibody
- 2) Anti-idiotype antibody
- 3) Receptor blockade

Fc-dependent mechanisms:

- 1) Cross-linking and stimulating inhibitory FcγRs
- 2) Blocking activating FcγRs
- 3) Presentation of Fc peptide to T cells that polarize toward a regulatory phenotype

Alessandra Franco MD PhD UCSD Collaboration with the KD Research Center

Immune monitoring of KD subjects before and after treatment

KD patients need immune regulation more than immune suppression Healing **Regulatory T cells (Treg)** Inflammation/Damage **Pro-inflammatory T cells** CD8+ cytotoxic CD4+ Th17 **Pro-inflammatory cytokines Tolerogenic dendritic cells** IFNγ TNFq **Anti-inflammatory cytokines** IL-10 TGFβ

Soluble TNF Receptor Levels in KD

Furukawa et al, J Pediatr. 1994

Infliximab: Chimeric monoclonal antibody

К

Chimeric (mouse/human)
IgG₁ monoclonal antibody
Binds to TNFα with high affinity and specificity

Antibody neutralization of TNFα

Phase III, randomized, double-blind, placebo-controlled, trial of infliximab + IVIG for initial treatment of KD patients

HYPOTHESIS:

The addition of infliximab to standard IVIG + aspirin therapy will more effectively reduce inflammation in acute KD compared to standard treatment Primary Outcome Difference in rates of treatment-resistance* between the placebo + IVIG and infliximab + IVIG groups

*Fever (≥38°C) 36 hours – 7 days after the end of the 1st IVIG infusion

 Sample size (196 subjects) calculated based on 80% power to detect reduction in treatment-resistance from 20% to 5%

Primary outcome: No difference in treatment resistance rate

Fever 36 hours-7days after end of 1st IVIG infusion

Infliximab is safe in KD

 No difference in adverse events between groups

- Tolerated well both in infants and older children
 - 11 infants < 1 yr. received infliximab

Biologic Effect: Change in mean laboratory values from baseline

	Placebo	Infliximab	P value
Absolute neutrophil count @ 24 hours	-5019	-6108	0.024
C-reactive protein (mg/dL) @ 24 hrs	-3.6	-6.6	<0.0001
Erythrocyte sedimentation rate @ 2 weeks	-14	-23	0.009

Clinical Effect: Days of Fever* Following Enrollment

	Median days	95% CI		
Infliximab	1	1-1.4		
Placebo	2	1.6-2.1		
P<0.0001				

 Fever day = any calendar day during hospitalization with T≥38°C

Clinical Effect: IVIG Infusion Reaction*

- * Chills or hypotension requiring temporary interruption of IVIG infusion
- All subjects were premedicated with acetaminophen & diphenhydramine prior to study drug

P<0.0001

All echoes read by a single reader blinded to treatment assignment

Change in mean LAD Z-score*

	Infliximab	Placebo	P value
Week 2	-0.6	-0.3	0.045
Week 5	-0.8	-0.5	NS

*Z score = standard deviations from the mean internal diameter adjusted for body surface area NS = not significant

Summary of infliximab effects

- Safe, even in children < 1 year
- No measurable effect on treatment resistance (11%)
- Biologic effect: less inflammation
- Clinical effect:
 - » Fewer days of fever
 - » Larger reduction in LAD Z-score

What is the role of infliximab in KD?

Primary therapy:

- Safe
- Data suggest biologic/clinical effect but no reduction in treatment-resistance

Rescue therapy for IVIG-resistance:

- Safe alternative to 2nd IVIG but efficacy unproven
- RCT by Yokohama group in progress
- **KD** patient with shock or aneurysms
 - Consider addition of infliximab

Computer simulations predict thrombosis risk

Pre-and post thrombosis CT imaging in patient (A-D), and simulation results showing excellent correlation between wall shear stress predictions in simulation and location of subsequent thromboses (arrow and asterisk) at regions of low wall stress (blue).

Using the genetics tool kit to understand KD aneurysms

Other aneurysm syndromes associated with TGFβ pathway Look for genetic variations in genes in the TGF_β pathway that are more frequently associated with KD + aneurysms vs. **KD** - aneurysms

TGF β pathway

Immunohistochemical studies

- Coronary artery from a 3 mos. old infant with KD who died on Illness Day 12 of myocardial infarction
- Tissues stained with 2 fluorescent antibodies
 - » α smooth muscle actin (α SMA) + smoothelin
 - » Normal vascular smooth muscle cells stain + for both proteins
 - » Myofibroblasts stain only with α SMA

Myofibroblasts in KD arteritis: α -SMA and smoothelin double staining

Arteritis side

Current management of coronary artery involvement

Follow echocardiograms for progression of coronary artery abnormalities

No treatment to <u>STOP</u> progression of aneurysms

The benefits of statins (More than just lowering cholesterol)

- 1. Anti-inflammatory
 - » Inhibit expression of T cell costimulatory molecules
 - Increase the number and suppressive function of regulatory T cells
- 2. Antioxidant

3. Prevent vessel damage & promote vessel healing

- » Reduce epithelial to mesenchymal transition that creates myofibroblasts
- » Inhibit secretion of MMPs
- Increase number of circulating endothelial progenitor cells

KD mouse model & atorvastatin

Dose dependent decrease of T cell prolif (³H incorporation), TNF α , and MMP-9

Blankier, Clin Exp Immuno, 2011

Phase I/IIa trial of atorvastatin for acute KD

Adriana Tremoulet, MD, MAS Jane C. Burns, MD University of California, San Diego <u>Website: Clinicaltrials.gov</u>

Safety in Children

 FDA-approved for children 8-18 years old with familial hypercholesterolemia
 » SAFE

- » Did not impair growth
- » Did not impair sexual development

A 6-week course of atorvastatin will promote healing of early coronary artery abnormalities in children with Kawasaki disease

Specific Aims

- 1. Test safety of escalating doses of atorvastatin in infants and children with KD and coronary artery abnormalities
- 2. Pharmacokinetics of atorvastatin in patients with KD
- 3. Exploratory aim: Test whether atorvastatin will reduce inflammation and oxidative stress, induce T-cell regulation, and improve echocardiographic outcome compared to matched controls.

Atorvastatin study dosing regimen

Atorvastatin dose escalation scheme				
Dose cohort	Daily dose	No. of subjects		
1	0.125 mg/kg/day	3-6		
2	0.25 mg/kg/day	3-6		
3	0.5 mg/kg/day	3-6		
4	0.75 mg/kg/day	3-6		
TOTAL		12-24		

Safety monitoring

- Baseline fasting lipid panel, liver enzymes, CPK, ESR, CRP, WBC
- Repeat laboratory testing at 2 and 6 weeks
 - » Adverse event and dose-limiting toxicity defined for each laboratory value
 - » Stopping rules defined

Atorvastatin trial to date
Added second site: University of Colorado, Denver, Peini Jon, PI

- Enrolled <u>5 patients</u>: 4 in the lowest dosing cohort, 1pt in 2nd dosing cohort
- No serious adverse events
- DSMB review of data after completion of each dosing cohort

Kawasaki disease: A climate connection?

US Team

Dan Cayan Emelia Bainto Jane C. Burns Marian Melish Ian Lipkin

Japanese Team

Hiroshi Yanagawa Yosikazu Nakamura Ritei Uehara Mayumi Yashiro Tomisaku Kawasaki

Catalan Team Joan Ballester Jordi Anton

Methods: Seasonality for Japan

135,027 KD cases from 1979-1998 (19 yrs) » Determined average incidence (# cases/day) for each month and each prefecture » Ranked each month for each prefecture on a 1-

12 scale, red=highest, blue=lowest

 Climate-related factors trigger KD
 » A regional-scale climate pattern precedes the onset of a KD cluster

Major Epidemics of KD in Japan

KD and surface winds in Japan (a), San Diego (b) and Hawaii (c).

Barcelona Hypotheses

The Barcelona meeting hosted by IC3 in September 2010 was attended by representatives from Japan, US and Western Europe

Hypothesis #1:

Tropospheric winds carry an agent that when inhaled by genetically susceptible infants and children causes KD

Hypothesis #2:

The KD agent is transmitted through aerosolized dust particles that originate from somewhere in Central Asia

Burns Laboratory 2013